Zachary Ferguson

Contact	Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 32 Vassar Street, The Stata Center, Building 32 Cambridge, MA 02139	Algorithmic Design Group	
		email: zfergus@mit.edu web: zferg.us	
Research Interests	Computer graphics, simulation, physically-based animation, collision detection and response, digital fabrication, geometric modeling, geometry processing		
Education	New York University , New York, NY Doctor of Philosophy in Computer Science Thesis: Provably Robust and Accurate Methods for Rigid and Contact	Fall 2017–Spring 2023 Advisor: Daniele Panozzo Deformable Simulation with	
	George Mason University, Fairfax, VA Bachelor of Science in Computer Science; minor in Mathematic Honors: summa cum laude (GPA: 3.96/4.00)	Fall 2013–Spring 2017 cs	
Employment	 Massachusetts Institute of Technology, Postdoctoral Associate Fall 2023–Pr Supervisor: Mina Konaković Luković, Algorithmic Design Group (ADG) Research in differentiable simulation and metamaterial design. 		
	New York University		
	Assistant Research Scientist Graduate Research Assistant Advisor: Daniele Panozzo, Geometric Computing Lab (GCL)	Summer 2023 Fall 2017–Spring 2023	
• Researched algorithms for computer graphics, physically-based animation, sim ometry processing, and collision detection.			
	• Led the development of several open-source including the IPC Toolkit and Pe		
	• Collaborated with several team members and across universities to conduct cutting-ed research.		
• Supervised masters and undergraduate students on research projects related graphics and physical simulation.		projects related to computer	
	Adobe Research, Research Scientist Intern Mentors: Danny Kaufman and Qingnan Zhou	Summer 2018/2022	
	• Implemented adaptive meshing algorithms for improved phy performance.	sical simulation results and	
	• Research published as "In-Timestep Remeshing for Contacting Transactions on Graphics.	ng Elastodynamics" in ACM	
	Carbon , Computational Geometry Intern Supervisors: Weixiong Zheng and Hardik Kabaria	Summer 2021–Spring 2022	
	• Researched and implemented simulation systems for physically with contact.	validating lattice structures	

George Mason University, Undergraduate Research Assistant Fall 2015–Summer 2017 Advisor: Yotam Gingold, Creativity and Graphics Lab (CraGL)

- Research published as "Seamless: Seam erasure and seam-aware decoupling of shape from mesh resolution" in ACM Transactions on Graphics.
- PUBLICATIONS 1 Differentiable solver for time-dependent deformation problems with contact. Zizhou Huang*, Davi Colli Tozoni*, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin. ACM Transactions on Graphics, 2024. To be presented at SIGGRAPH 2024 (paper, video)
 - 2 A systematic comparison between FEBio and PolyFEM for biomechanical systems. Liam Martin, Pranav Jain, Zachary Ferguson, Torkan Gholamalizadeh, Faezeh Moshfeghifar, Kenny Erleben, Daniele Panozzo, Steven Abramowitch, and Teseo Schneider. Computer Methods and Programs in Biomedicine, 244:107938, 2024 (paper)
 - 3 In-Timestep Remeshing for Contacting Elastodynamics. Zachary Ferguson, Teseo Schneider, Danny M. Kaufman[†], and Daniele Panozzo[†]. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 42(4), 2023 (project page, paper, video, code, data)
 - 4 High-Order Incremental Potential Contact for Elastodynamic Simulation on Curved Meshes.
 Zachary Ferguson, Pranav Jain, Denis Zorin, Teseo Schneider, and Daniele Panozzo.
 In ACM SIGGRAPH 2023 Conference Proceedings, 2023 (project page, paper, video, code, data)
 - 5 LibHip: An open-access hip joint model repository suitable for finite element method simulation. Faezeh Moshfeghifar, Torkan Gholamalizadeh, Zachary Ferguson, Teseo Schneider, Michael Bachmann Nielsen, Daniele Panozzo, Sune Darkner, and Kenny Erleben. Computer Methods and Programs in Biomedicine, 226:107140, 2022 (paper, data)
 - 6 Open-Full-Jaw: An open-access dataset and pipeline for finite element models of human jaw. Torkan Gholamalizadeh, Faezeh Moshfeghifar, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, Sune Darkner, Masrour Makaremi, François Chan, Peter Lampel Søndergaard, and Kenny Erleben. *Computer Methods and Programs in Biomedicine*, 224:107009, 2022 (paper, data)
 - 7 A Cross-Platform Benchmark for Interval Computation Libraries. Xuan Tang, Zachary Ferguson, Teseo Schneider, Denis Zorin, Shoaib Kamil, and Daniele Panozzo. In Proceedings of the 14th International Conference on Parallel Processing and Applied Mathematics, 2022 (project page, paper)
 - 8 Fast and Exact Root Parity for Continuous Collision Detection. Bolun Wang, Zachary Ferguson, Xin Jiang, Marco Attene, Daniele Panozzo, and Teseo Schneider. Computer Graphics Forum (Proceedings of Eurographics), 41(2), 2022 (project page, paper, code)

^{*}Joint first authors

[†]Joint last authors

9 A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection. Bolun Wang*, Zachary Ferguson*, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele Panozzo. ACM Transactions on Graphics, 40(5), 2021. Presented at SIGGRAPH 2022 (project page paper code date)

(project page, paper, code, data)

- 10 Intersection-free Rigid Body Dynamics. Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois, Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. ACM Transactions on Graphics (Proceedings of SIG-GRAPH), 40(4), 2021 (project page, paper, video, code)
- 11 DHFSlicer: Double Height-Field Slicing for Milling Fixed-Height Materials. Jinfan Yang, Chrystiano Araújo, Nicholas Vining, **Zachary Ferguson**, Enrique Rosales, Daniele Panozzo, Sylvain Lefevbre, Paolo Cignoni, and Alla Sheffer. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 39(6), 2020 (project page, paper)
- 12 Incremental Potential Contact: Intersection- and Inversion-free Large Deformation Dynamics. Minchen Li, **Zachary Ferguson**, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. *ACM Transactions* on Graphics (Proceedings of SIGGRAPH), 39(4), 2020 (project page, paper, video, code)
- 13 Stitch Meshing. Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 37(4), 2018 (project page, paper, video)
- 14 Seamless: Seam erasure and seam-aware decoupling of shape from mesh resolution. Songrun Liu*, Zachary Ferguson*, Alec Jacobson, and Yotam Gingold. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), 36(6), 2017 (project page, paper, video, code)

Awards	Adobe Research Fellowship Adobe Inc.	2022
	Dean's Dissertation Fellowship Graduate School of Arts and Science, New York University	2022
	Jacob T. Schwartz Ph.D. Fellowship Courant Institute of Mathematical Science, New York University	2021
	Henry M. MacCracken Fellowship Graduate School of Arts and Science, New York University	2017
	Distinguished Academic Achievement Award Computer Science Department, George Mason University	2017
	PEC Solutions Endowed Scholarship Volgenau School of Engineering, George Mason University	2016
	Dean's Scholarship Volgenau School of Engineering, George Mason University	2015
Selected	Towards Robust and Accurate Simulation of Contacts	August 2022

Courses	Contact and Friction Simulation for Computer Graphics. Sheldon Andrews, Kenny Erleben, and Zachary Ferguson. In ACM SIGGRAPH 2022 Courses, 2022. (course content)		
Teaching	Summer Geometry Initiative , Teaching Assistant Project: Intrinsic Mollification	Summer 2023	
	New York University , Teaching Assistant Special Topics: Computer Graphics (CSCI-UA.0480)	Fall 2019	
	iD Tech , Instructor Game Programming for Apple iOS and Android with Unity	Summer 2015	
Professional Activities	ACM SIGGRAPH, Reviewer ACM SIGGRAPH Asia, Reviewer Eurographics, Reviewer Computer-Aided Design, Reviewer Computers & Graphics, Reviewer Computer Aided Geometric Design, Reviewer	$\begin{array}{c} 2020,\ 20222024\\ 2022,\ 2023\\ 2024\\ 2021,\ 2023\\ 2018,\ 2021\\ 2020 \end{array}$	
Open-Source Projects	 I have created, developed, and maintained several open-source projects for physical simulation. Through this work, I seek to democratize physical simulation tools and enable others to leverage the power of our algorithms. IPC Toolkit (C++ and Python): ipctk.xyz PolyFEM (C++): polyfem.github.io IPC (C++): github.com/ipc-sim/ipc Tight-Inclusion CCD (C++): github.com/continuous-collision-detection/tight-inclusion Rigid IPC (C++): github.com/ipc-sim/rigid-ipc 		
Technical Skills	 Programming Languages: C/C++, Python, CUDA, JavaScript Technologies: CMake, Git, Eigen, Catch2, PyTorch, OpenGL (GLSL) Physics Engines: NVIDIA PhysX, Bullet Physics, Box2D, Project Chrono Game Development: Unity (C#), Phaser (JavaScript) Web Development: HTML, CSS, JavaScript Tools: Blender, ParaView, Fusion 360 Math and Physics: linear algebra, numerical optimization, finite element method, physics-based animation, cloth/elastodynamics simulation 		