Contents

Useful LaTeX Packages

siunitx

\usepackage{siunitx}
\sisetup{
    per-mode = symbol,
    list-pair-separator = {\text{ and }},
    list-final-separator = {\text{, and }},
    list-units = single,
    group-separator = {,}
}

Examples

$\Delta t = \qty{e-3}{\s}$
LaTeX Output
$\Delta t = \qty{e-3}{\s}$ \(\rightarrow\) \(\Delta t = 10^{-3}~\text{s}\)
\qty{5}{\GHz} \(\rightarrow\) \(5~\text{GHz}\)
\num{5e9} \(\rightarrow\) \(5\times10^9\)
\unit{\GPa} \(\rightarrow\) \(\text{GPa}\)
\qtylist{10;30;45}{\m} \(\rightarrow\) \(10, 30 \text{, and } 45~\text{m}\)

natbib

\usepackage{natbib}

Examples

Input 1:

\citet{Ferguson2021RigidIPC} introduce a method for simulating rigid bodies using Incremental Potential Contact~\cite{Li2020IPC}.

Output 1:

Ferguson et al. [2021] introduce a method for simulating rigid bodies using Incremental Potential Contact [Li et al. 2020].

Input 2:

\citeauthor{Ferguson2021RigidIPC}'s [\citeyear{Ferguson2021RigidIPC}] approach relies on nonlinear continuous collision detection.

Output 2:

Ferguson et al.’s [2021] approach relies on nonlinear continuous collision detection.

cleveref

\usepackage[capitalize,noabbrev]{cleveref}
\newcommand{\creflastconjunction}{, and\nobreakspace}

Examples

Input 1:

In \cref{fig:teaser}, we show an example of what our method can do.

Output 1:

In Figure 1, we show an example of what our method can do.

Input 2:

We provide a complete analysis of this parameter in \cref{sec:magic-number} and illustrate its importance in \cref{fig:magic-number-ablation}.

Output 2:

We provide a complete analysis of this parameter in Section 5.2 and illustrate its importance in Figure 9.

Input 3:

\Cref{eq:total-energy} shows our objective function used to minimize geometric error.

Output 3:

Equation (3) shows our objective function used to minimize geometric error.

acronym

\usepackage{acronym}

Example

% In the preamble
\newacro{FEM}{finite element method}
\newacro{PD}{positive-definite}
\newacro{LLT}[$LL^T$]{Cholesky decomposition}

% In the document
The \ac{FEM} is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Since the system of equations used in \ac{FEM} is often \ac{PD} we can use \ac{LLT}. \ac{LLT} is a decomposition of a symmetric, \ac{PD} matrix into the product of a lower triangular matrix and its transpose.

Output:

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Since the system of equations used in FEM is often positive-definite (PD) we can use Cholesky decomposition (\(LL^T\)). \(LL^T\) is a decomposition of a symmetric, PD matrix into the product of a lower triangular matrix and its transpose.