Useful LaTeX Packages
siunitx
\usepackage{siunitx}
\sisetup{
per-mode = symbol,
list-pair-separator = {\text{ and }},
list-final-separator = {\text{, and }},
list-units = single,
group-separator = {,}
}
Examples
$\Delta t = \qty{e-3}{\s}$
LaTeX | Output | |
---|---|---|
$\Delta t = \qty{e-3}{\s}$ |
\(\rightarrow\) | \(\Delta t = 10^{-3}~\text{s}\) |
\qty{5}{\GHz} |
\(\rightarrow\) | \(5~\text{GHz}\) |
\num{5e9} |
\(\rightarrow\) | \(5\times10^9\) |
\unit{\GPa} |
\(\rightarrow\) | \(\text{GPa}\) |
\qtylist{10;30;45}{\m} |
\(\rightarrow\) | \(10, 30 \text{, and } 45~\text{m}\) |
natbib
\usepackage{natbib}
Examples
Input 1:
\citet{Ferguson2021RigidIPC} introduce a method for simulating rigid bodies using Incremental Potential Contact~\cite{Li2020IPC}.
Output 1:
Ferguson et al. [2021] introduce a method for simulating rigid bodies using Incremental Potential Contact [Li et al. 2020].
Input 2:
\citeauthor{Ferguson2021RigidIPC}'s [\citeyear{Ferguson2021RigidIPC}] approach relies on nonlinear continuous collision detection.
Output 2:
Ferguson et al.’s [2021] approach relies on nonlinear continuous collision detection.
cleveref
\usepackage[capitalize,noabbrev]{cleveref}
\newcommand{\creflastconjunction}{, and\nobreakspace}
Examples
Input 1:
In \cref{fig:teaser}, we show an example of what our method can do.
Output 1:
In Figure 1, we show an example of what our method can do.
Input 2:
We provide a complete analysis of this parameter in \cref{sec:magic-number} and illustrate its importance in \cref{fig:magic-number-ablation}.
Output 2:
We provide a complete analysis of this parameter in Section 5.2 and illustrate its importance in Figure 9.
Input 3:
\Cref{eq:total-energy} shows our objective function used to minimize geometric error.
Output 3:
Equation (3) shows our objective function used to minimize geometric error.
acronym
\usepackage{acronym}
Example
% In the preamble
\newacro{FEM}{finite element method}
\newacro{PD}{positive-definite}
\newacro{LLT}[$LL^T$]{Cholesky decomposition}
% In the document
The \ac{FEM} is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Since the system of equations used in \ac{FEM} is often \ac{PD} we can use \ac{LLT}. \ac{LLT} is a decomposition of a symmetric, \ac{PD} matrix into the product of a lower triangular matrix and its transpose.
Output:
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Since the system of equations used in FEM is often positive-definite (PD) we can use Cholesky decomposition (\(LL^T\)). \(LL^T\) is a decomposition of a symmetric, PD matrix into the product of a lower triangular matrix and its transpose.